

Targeting TDP-43 with a vectorized full-length antibody decreases neuropathology in a model of ALS/FTD

Damien Nevoltris, PhD | AD/PD™ 2024 | 8th March

Disclaimer

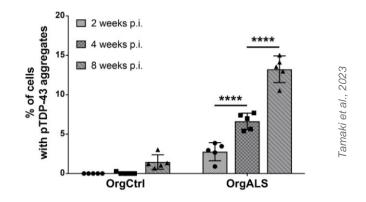
This presentation may contain statements that constitute "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune's strategies or expectations. In some cases, you can identify these statements by forward-looking words such as "may," "might," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "projects," "potential," "outlook" or "continue," and other comparable terminology. Forward-looking statements are based on management's current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions "Item 3. Key Information—Risk Factors" and "Item 5. Operating and Financial Review and Prospects" in AC Immune's Annual Report on Form 20-F and other filings with the Securities and Exchange Commission. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are qualified in their entirety by this cautionary statement.

SupraAntigen® is a registered trademark of AC Immune SA in the following territories: AU, EU, CH, GB, JP, RU, SG and US.

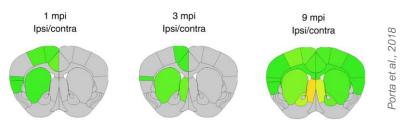
Conflict of interest disclosure

Damien Nevoltris is an employee of AC Immune entitled to stock options

TDP-43 mediated pathology in ALS¹ and FTD²


Progression and spreading of pathology

TDP-43 in ALS, FTD patients and pattern of brain spreading



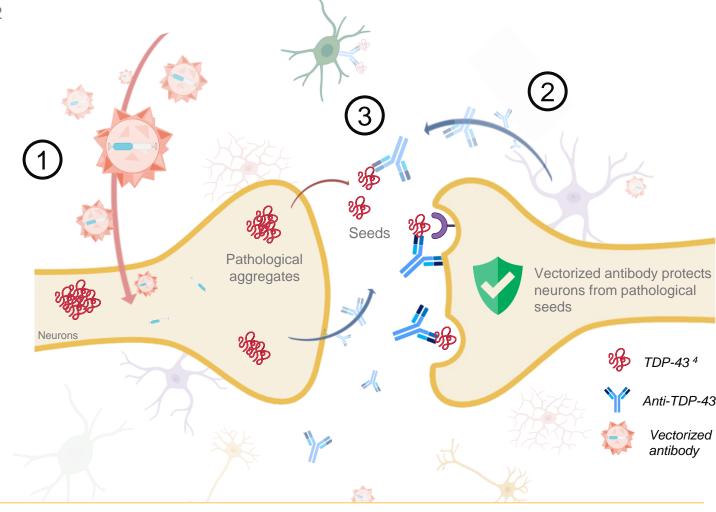
Prion-like spreading recapitulated in disease models

ALS cerebral organoids injected with ALS spinal cord extracts

Tg mice injected with FTLD-TDP³ brain extracts

Extracellular TDP-43 species involved in spreading are promising targets for an antibody-based therapeutic approach

(1): ALS – Amyotrophic lateral sclerosis; (2): FTD – Frontotemporal dementia; (3): FTLD-TDP - Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology


Addressing limited mAb¹ exposure in brain by vectorized antibody

Local antibody production in the CNS²

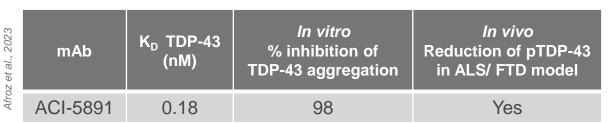
AAV³ vectors deliver antibody genes (vectorized antibody) in brain cells

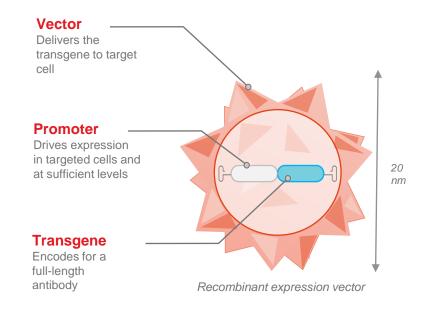
Local and long-term antibody expression (months, years), with single dose administration

Antibodies neutralize pathological seeds, effector function of full-length antibody promote microglia-mediated clearance

- Vectorized Antibody: antibody genes are delivered by AAV vectors to improve delivery in CNS
- Single dose administration affords long term exposure and pathological seed clearance

(1): mAb: monoclonal antibody; (2): Central Nervous System; (3): AAV - Adeno-associated virus; (4): TDP-43: TAR DNA-binding protein 43



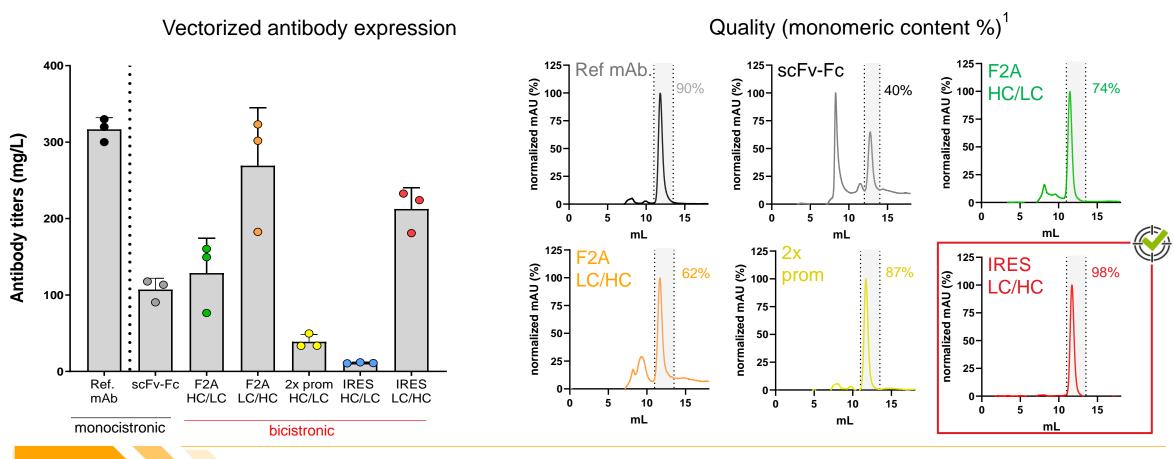

Generated anti-TDP-43 mAb suitable for vectorization

AAV packaging size is a bottleneck to vectorized antibody

Proprietary mAb targeting C-terminal domain of TDP-43

Maximum capacity: 4.7 kb

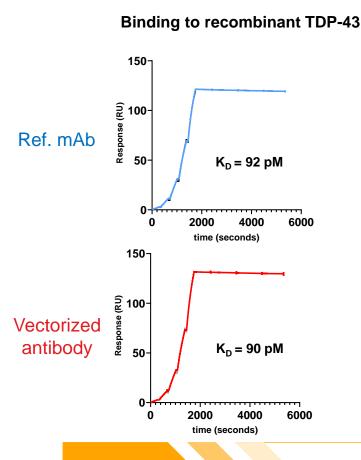
promoter + antibody genes + regulatory elements



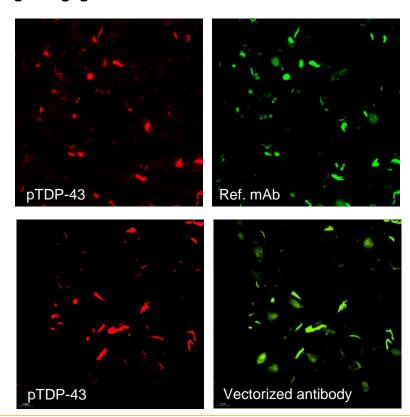
- ACI-5891, a potent blocker of TDP-43 pathology used as proof of concept for vectorization
- Multiple designs of antibody transgene evaluated to address constrains of AAV packaging

IRES-based construct provides high-quality vectorized antibody

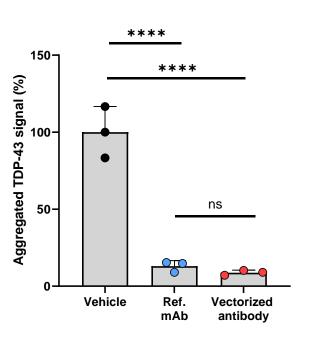
Expression titers and monomeric content


- High expression titer (>200mg/L) and excellent antibody quality (98% monomers) obtained with IRES LC/HC construction
- Key to providing potency and lowering risk of immunogenicity

(1): measured by size-exclusion chromatography; IRES: Internal ribosome entry sites; scFv-Fc – single-chain Fv-Fc; HC: Heavy chain; LC: Light Chain; F2A: Furin-2A;, 2xprom: two promoters

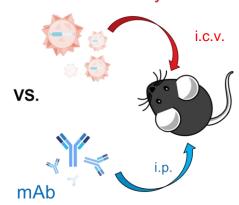


Vectorized antibody retains pico-molar binding affinity and potency


In vitro characterization: binding and aggregation inhibition

Target engagement on human FTLD-TDP¹ brain sections

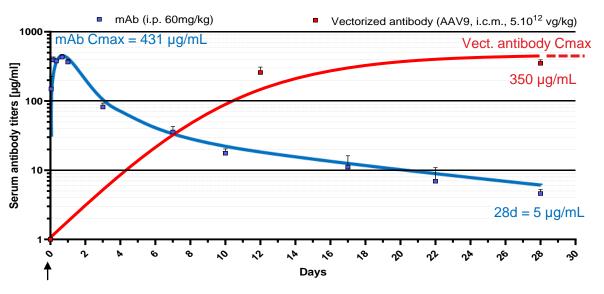
Aggregation inhibition of TDP-43


 Vectorized antibody presents equivalent potency and binding properties to TDP-43 compared to parental mAb antibody ACI-5891

(1) FTLD-TDP - Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology

Functional vectorized antibody produced in vivo

Vectorized antibody vs bolus mAb administration


Vectorized antibody

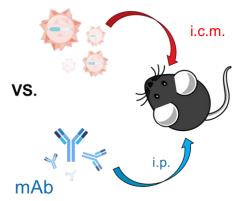
Chimeric human ACI-5891

Readout at 28 days:

 Antibody levels in serum and CSF measured by target mediated binding assay

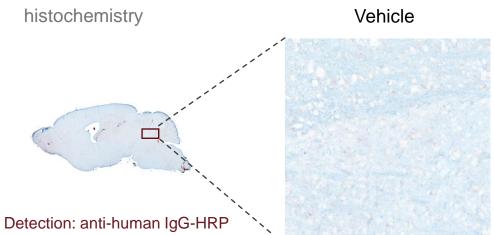
Exposure (AUC over 28 days)	Serum (µg/mL.day)	CSF (ng/mL.day)
mAb (60mg/kg)	1309	3885
Vectorized antibody	9800	10976

 Single administration of AAV9 (5.10¹² vg/kg) supports long-term production of functional vectorized anti-TDP-43 antibody and provides higher exposure compared to bolus mAb administration

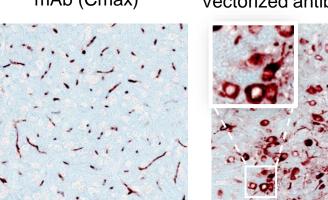


Vectorized antibody are expressed in brain

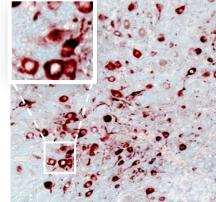
Vectorized antibody vs bolus mAb administration


Readout at 28 days:

Vectorized antibody

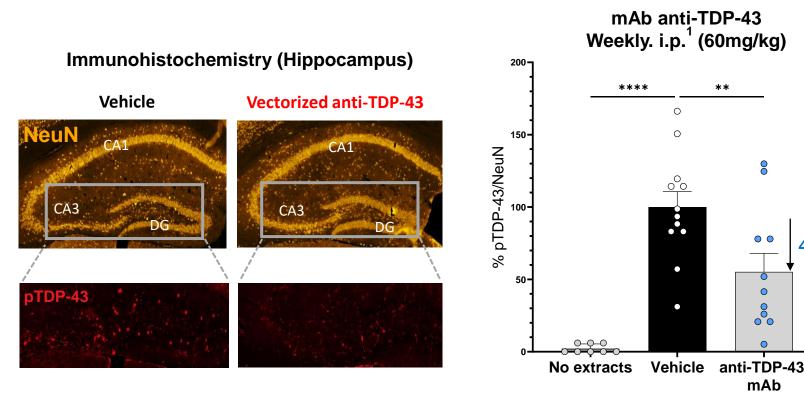


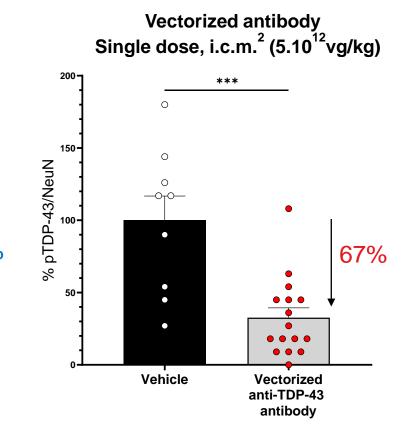
Chimeric human ACI-5891


- Antibody levels in plasma
- Brain Immuno-

mAb (Cmax)

Vectorized antibody (AAV9)




- Ip injected mAb are mostly present in capillaries 24h post administration
- Brain cells provide sustained production of functional antibody
- No vectorized antibody detected within cell nucleus where endogenous TDP-43 is mostly present

Vectorized antibody reduces pathological species of TDP-43

CamKIIa-hTDP-43_{NLSm} mice – 3 months post extract administration

 Vectorized antibody delivered by AAV9 significantly reduced pTDP-43 levels by 67% compared to control cohort, with a single dose administration, offering a promising alternative to conventional immunotherapy

Summary and conclusions

Platform technology

- Established a "plug and play" vectorized antibody platform:
 - High expression of excellent antibody quality
 - Retained binding affinity to target
 - Comparable potency to mAb

In vivo production

- *In vivo*, single administration of AAV supports long-term *in situ* production of functional vectorized anti-TDP-43 mAb (up to 4 months)
- Provides higher exposure compared to bolus mAb administration

Proof-of-concept

- First time demonstration that vectorized full-length antibody decreases pathological TDP-43 (67%) in mouse model of ALS/FTD
- Offers a promising alternative to conventional immunotherapy

Validated approach

- Data validate the approach for targeting NDD¹, optimized delivery can be achieved by:
 - Engineered capsids
 - Selective promoters
 - Transgene expression silencing in off-target tissues

(1) Neurodegenerative diseases

Acknowledgements

Greg del Val Florence Gauye Mickaël Audrain **Elodie Chevalier** Sebastien Menant Monisha Ratnam Romain Ollier Tamara Seredenina Tariq Afroz Mateusz Kozak

Andrea Pfeifer Marie Kosco-Vilbois

Florian Udry Paula Stephen Bojana Portmann

Elodie Brison Kristina DeDuck Barry Bedell

AC Immune

We continue to shape the future of neurodegeneration by discovering and developing breakthrough therapies through pioneering science and precision medicine

Web: https://www.acimmune.com/

Social media: www.linkedin.com/company/ac-immune

Presenter: damien.nevoltris@acimmune.com

Business development: bd@acimmune.com

Investors and Media: communications@acimmune.com

13