DISCOVERY OF [18F]ACI-12589: A NOVEL AND PROMISING PET-TRACER FOR ALPHA-SYNUCLEIN

Francesca Capotosti, PhD | AD/PD™ 2022 | 18 March
Disclaimer

This presentation contains statements that constitute “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune’s strategies or expectations. In some cases, you can identify these statements by forward-looking words such as “may,” “might,” “will,” “should,” “expects,” “plans,” “anticipates,” “believes,” “estimates,” “predicts,” “projects,” “potential,” “outlook” or “continue,” and other comparable terminology. Forward-looking statements are based on management’s current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions “Item 3. Key Information – Risk Factors” and “Item 5. Operating and Financial Review and Prospects” in AC Immune’s Annual Report on Form 20-F and other filings with the Securities and Exchange Commission. These include: the impact of Covid-19 on our business, suppliers, patients and employees and any other impact of Covid-19. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are qualified in their entirety by this cautionary statement.

This presentation is strictly confidential, is being distributed to a limited range of invited persons solely for their own information, may not be distributed to the press or any other person, and may not be reproduced or published, in whole or in part, in any form.

Disclosures
Francesca Capotosti is an employee of AC Immune entitled to stock options

Funding
Grants from the Michael J Fox Foundation
A-syn\(^1\) PET\(^2\) tracers can improve the diagnosis and treatment of NDD\(^3\)

An effective PET tracer is needed to best enable precision medicine for α-synucleinopathies

- Early Diagnosis and Treatment is Key in NDD
- Early diagnosis of α-syn-opathies\(^4\) is not possible with current techniques
- Benefits of PET tracers for imaging have been validated

- Once neurons are damaged, they cannot be repaired or replaced with current therapies
- Dopaminergic imaging correlates poorly with disease severity
- Genetic testing is ineffective in most cases
- Low abundance of α-syn limits utility of fluid biomarkers
- Patient stratification
- Better clinical trials when focused using PET tracer for recruitment and monitoring
- May enable combination treatment of co-pathologies

(1) Alpha-synuclein; (2) Positron emission tomography; (3) Neurodegenerative disease; (4) Alpha-synucleinopathies
Precision medicine approach enabled by the Morphomer® platform

Developing a suite of PET\(^1\) tracers against emerging targets in NDD\(^2\)

Leverage the Morphomer® small molecule platform:

- Non-peptidic, small molecules with CNS-drug properties for brain penetration
- Conformation-specificity (pathologic protein species)
- Selectivity against co-pathologies (Abeta, Tau, TDP-43)
- Pharmacokinetics suitable for brain PET imaging

(1) Positron emission tomography; (2) Neurodegenerative disease; (3) Neurofibrillary tangles; (4) Alpha synuclein; (5) TAR DNA binding protein-43
ACI-12589: a potential a-syn1 PET2 tracer

[3H]ACI-12589 specific binding on brain tissue from different a-synucleinopathy cases

- ACI-12589 displays a clear autoradiography signal which correlates with the presence of pathological a-syn
- Binding affinities are measured in the range of 8-30 nM with Bmax/Kd ratios of ~ 5-10

(1) alpha-synuclein; (2) Positron emission tomography; (3) Parkinson’s disease with G51D SNCA mutation; (4) Multiple system atrophy; (5) Immunohistochemistry
ACI-12589: a potential a-syn\(^1\) PET\(^2\) tracer

[\(^3\)H]ACI-12589 target engagement on a range of different a-syn inclusions

- ACI-12589 displays strong target engagement on Lewy bodies and Lewy neurites, as well as smaller a-syn inclusions, across a wide range of a-synucleinopathies

(1) alpha-synuclein; (2) Positron emission tomography; (3) Parkinson’s disease; (4) Parkinson’s disease with dementia; (5) Multiple system atrophy; (6) Dementia with Lewy bodies; (7) Lewy body variant of Alzheimer’s disease; (8) Immunohistochemistry

Ref.: Capotosti et., AAIC 2020
ACI-12589: a potential a-syn\(^1\) PET\(^2\) tracer

[18F]ACI-12589 specific binding on brain tissue from different a-synucleinopathy cases

- Familial PD\(^3\)
- PDD\(^4\)
- PD\(^5\)
- MSA\(^6\)
- LBV\(^7\)

- Healthy Controls

Classical autoradiography experiments confirms specific binding across a wide range of a-synucleinopathies

- (1) alpha-synuclein
- (2) Positron emission tomography
- (3) Parkinson’s disease with G51D SNCA mutation
- (4) Parkinson’s disease with dementia
- (5) Parkinson’s disease
- (6) Multiple system atrophy
- (7) Lewy body variant of Alzheimer’s disease
- (8) Immunohistochemistry
ACI-12589: selective versus Abeta and Tau

[3H]ACI-12589 assessed using Alzheimer’s disease tissue

Radiobinding with AD\(^1\) brain homogenates (Frontal Cortex)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3H]Abeta reference</td>
<td>10 nM</td>
</tr>
<tr>
<td>[3H]ACI-12589</td>
<td>317 nM</td>
</tr>
</tbody>
</table>

High-resolution ARG\(^2\) on Tau rich AD sections (Entorhinal Cortex)

IHC\(^3\) for Tau (MC1)

ACI-12589 displays selectivity versus co-pathologies such as Abeta and Tau

(1) Alzheimer’s disease; (2) Autoradiography; (3) Immunohistochemistry
ACI-12589: minimal off-target binding

[3H]ACI-12589 assessed for off-target binding to MAO-B¹

When assessed against 133 receptors and enzymes, only a weak off-target binding was observed for MAO-B confirmed by limited displacement using the MAO-B inhibitor Deprenyl by autoradiography experiments.

¹Monoamine oxidase-B; (2) Immunohistochemistry
[18F]ACI-12589 as potential first-in-class PET\(^1\) tracer for MSA\(^2\)

Representative PET scan images of MSA and controls

- PET scan images suggest tracer retention in areas affected by disease process in MSA such as the cerebellar white matter and the cerebellar peduncles
- Available clinical data will be presented by Ruben Smith on March 18, 06:45 PM – 07:00 PM, Room Onsite: 114

(1) Positron emission tomography; (2) Multiple system atrophy
[18F]ACI-12589 as potential first-in-class PET\(^1\) tracer for MSA\(^2\)

Data support the further clinical development in MSA, and continuing evaluation in other synucleinopathies

Preclinical data

- Significantly improved target binding with clean off-target profile
- Recognition of a-syn\(^3\) inclusions across different synucleinopathies
- Selectivity versus potential co-pathologies
- Pharmacokinetic profile suitable for use as a brain PET imaging agent

Clinical data

- Short scan time: good brain uptake and fast signal equilibration
- Substantial tracer retention seen in MSA in expected brain regions
- No clinically relevant in vivo block of cerebellar signal after MAO-B\(^4\) blocking

(1) Positron emission tomography; (2) Multiple system atrophy; (3) Alpha-synuclein; (4) Monoamine oxidase-B
Acknowledgements

Efthymia Vokali
Jerome Molette
Myriam Ravache
Christophe Delgado
Jaqueline Kocher
Laure Pittet
Elpida Tsika
Kasia Piorkowska
Heiko Kroth
Tanja Jürgens
Ruth Luthi-Carter
Valerie Hliva
Olivier Sol
Andrea Pfeifer
Johannes Streffer
Marie Kosco-Vilbois

Oskar Hansson
Ruben Smith
Martin Schain
Tomas Ohlsson
Klas Brattby