SMALL MOLECULES TARGETING TAU PROPAGATION DEMONSTRATE EFFICACY IN AN AGGRESSIVE TAUOPATHY MOUSE MODEL
Disclaimer

This presentation may contain statements that constitute “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune’s strategies or expectations. In some cases, you can identify these statements by forward-looking words such as “may,” “might,” “will,” “should,” “expects,” “plans,” “anticipates,” “believes,” “estimates,” “predicts,” “projects,” “potential,” “outlook” or “continue,” and other comparable terminology. Forward-looking statements are based on management’s current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions “Item 3. Key Information—Risk Factors” and “Item 5. Operating and Financial Review and Prospects” in AC Immune’s Annual Report on Form 20-F and other filings with the Securities and Exchange Commission. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are qualified in their entirety by this cautionary statement.

Disclosures

Sonia Poli is an AC Immune’s employee
No off-label nor investigational use of therapeutic products will be presented
SMALL MOLECULES TARGETING TAU PROPAGATION DEMONSTRATE EFFICACY IN AN AGGRESSIVE TAUOPATHY MOUSE MODEL

Dr. S. Poli
Head of Translational Science

March 31st, 2019
Rationale for targeting Tau

Aggregated Tau is inversely correlated with reduced MMSE score

- Tau pathology correlates well with disease severity

AD patients brain histology:
Inverse correlation of NFT with MMSE score

AD patients brain Pet Imaging:
Excellent inverse correlation of Pet signal and MME score

Ref: Okamura et al, Brain 2014

R² = 0.7368

\[r = -0.781 \]

\[P = 0.022 \]
Morphomer platform: Discovery of ACI-3024
Generation of conformation–specific small molecules

- Conformation-specific, non-peptidic, small molecules with drug like properties
- Protein propagation inhibitors (Kroth et al., 2012)
- Validated for selective binding to Abeta, Tau and alpha-Synuclein through *in vitro* efficacy
- Robust library of around 4500 compounds with desirable properties including brain penetration
- Around 1000 compounds screened so far for the Tau SME program
- Combination of library and medicinal chemistry program led to the discovery of ACI-3024
Morphomer binding induced conformational changes in Tau aggregates
Most of the conformational changes in Tau are located between amino acids 231-281
ACI-3024 - Lead characterization

Summary of *in vitro* results

Tau aggregation inhibition
- Potent reduction of Tau aggregation
- Effect independent of Tau and FTDP-17 isoform mutants

Target engagement
- Selective binding to aggregated Tau (25.1 nM)
- No binding to monomeric forms of Tau
- Selective binding to AD brain-derived pathological Tau (Ki 11.7 nM)

Cross-reactivity to Abeta and α-Synuclein
- No binding to Abeta from AD human brain
- No binding to Alpha-synuclein from human brain
- No binding to healthy control tissue
ACI-3024 – *In vitro* Pharmacology

Dose-dependent reduction of intracellular pathological Tau

Intracellular Tau misfolding in *in vitro* differentiated neuroblastoma cells expressing Tau P301L

- **Bright field**
 - Undifferentiated cells
 - Retinoic acid differentiated cells

- **Misfolded Tau (MC-1)**

Dose-dependent reduction of misfolded Tau

- *In vitro* treatment with ACI-3024 led to a dose-dependent decrease of misfolded Tau at low nM concentrations
ACI-3024 - Target engagement and functional selectivity

- ACI-3024 specifically binds Tau NFTs and is able to disaggregate Tau NFTs from human AD brain sections even in presence of amyloid plaques.
ACI-3024 - *In vivo* Evaluation in rTg4510 mice

Treatment study in aged transgenic mice

Mice
- rTg4510 tauopathy model expresses repressible (Tet promotor Tau on/off) human 4R0N Tau carrying the P301L mutation (SantaCruz, 2005)

Treatment
- Oral administration for 1 month starting at 5 months of age
 - ACI-3024 30mg/kg bi-daily
 - Dose and dosing regimen selected based on the assumption that efficacy is driven by 24 h CSF concentrations above target EC$_{50}$

Read-out
- Biochemistry: total, aggregated, and hyperphosphorylated brain Tau and CSF Tau
- Immuno-histochemistry: misfolded Tau
- Neuroinflammation: microglial analysis
Treatment study results
Assessment of compound efficacy in an aggressive Tauopathy model

Biochemistry: Analysis of pathological Tau in Tau ON/OFF rTg4510 mice

- Treatment with ACI-3024 significantly reduced aggregated and insoluble pS202/pT205 hyper-phosphorylated Tau in cortical homogenates
- The decrease was proportional to the plasma exposure to ACI-3024

Ref.: Poli S, et al., CTAD 2018
Treatment study results
Assessment of ACI-3024 treatment effects on misfolded Tau

Immunohistochemistry: Analysis of misfolded Tau (MC1) in rTg4510 brain section

- Treatment with ACI-3024 significantly reduced misfolded Tau
- The decrease was proportional to the plasma exposure to ACI-3024
ACI-3024 - Correlations between Tau in CSF and plasma exposure in rTg4510 mice

Evaluation of a potential biomarker for efficacy

- The significant inverse correlation between CSF Tau and ACI-3024 exposure in plasma might indicate an increase of Tau clearance from the brain
- CSF Tau concentrations will be explored as a biomarker for efficacy
ACI-3024 - Effect on neuro-inflammation
Assessment of compound efficacy on pathological Tau-induced neuro-inflammation

In vivo treatment study

In rTg4510 mice, treatment with ACI-3024 reduced microgliosis.
This was likely due to a detoxification of Tau aggregates that consequently decreases pathological Tau induced-microglial activation.
ACI-3024 - Effect on neuro-degeneration

Assessment of compound efficacy on pathological Tau-induced neuro-degeneration

Human AD-brain seeded Tau induction of neurodegeneration in primary neuron-microglia co-cultures

Detoxification of Tau aggregates with ACI-3024 significantly decreased Tau-induced neuro-degeneration

- Full-length Tau aggregated with 1/200 PHF seeds for 3 days; pre-incubated in presence of compounds for 1h and then incubated with cells for 3 days

Neurite length measured with Tuj1 staining

* Mean + SEM
1-way ANOVA
Fisher’s LSD

Ref.: AC Immune unpublished
ACI-3024 - Effect on neuro-inflammation
Assessment of compound efficacy on pathological Tau-induced neuro-inflammation

- This was likely due to a detoxification of Tau aggregates that consequently decreases pathological Tau induced-microglial activation
ACI-3024 – Proposed Mode of Action

1. Pathological Tau release from neurons
2. Pathological Tau uptake by microglia and following activation
3. Neurodegeneration

Direct ACI-3024 effects

Intracellular Tau pathology

Extracellular Tau toxicity

Downstream ACI-3024 effects

Microglia activation

Release

Legend

Aggregated Tau
Monomeric Tau
Soluble factors C1q
CD68+ vesicles

Neurodegeneration

AD PDJ April 2019

© 2019 AC Immune. Not to be used or reproduced without permission.
AC Immune’s targets in spreading hypothesis of misfolded tau in neuro-degenerative diseases

AC Immune’s therapies intervene at key points in the disease pathway

- Targeting both intracellular seeds and extracellular spreading by combination therapy of Morphomers and immunotherapy enables to fully control Tau pathology progression
- High selective Tau imaging diagnostic enables more precise patient characterization and potentially more precise prediction of AD progression
ACI-3024 – Summary of Preclinical evaluation

GLP-toxicology package for CTA submission for FiH studies

| **In vitro on- and off-target activity** | • ACI-3024 is active and selective in multiple *in vitro* pharmacology assays
• Binding assessed on 138 targets (Cerep Bioprint profile) shows good selectivity |
| **In vivo studies** | • In an *in vivo* therapeutic study ACI-3024 showed compound related treatment effects by biochemistry and IHC (brain, CSF and microglia) |
| **ADME** | • ACI-3024 has good *in vitro* and *in vivo* ADME properties, including low clearance, long half-life and good CNS disposition as assessed by brain and CSF concentrations |
| **In vitro tox and DDI** | • ACI-3024 has low potential for DDI in vitro (EC$_{50}$ on CYP > 25uM)
• It has and no PgP interaction
• It is negative in *in vitro* genotoxicity assays (AMES and MNT), and in the *in vivo* MLY |
| **GLP tox in rodents and non rodents** | • 4-week toxicology study with 2-week recovery successfully completed
• NOAEL established at 300 mg/kg in rodent and 450 mg/kg in non rodent |
| **GLP safety pharmacology** | • ICH S7 safety pharmacology battery successfully completed: cardiovascular telemetry study in non rodent; respiratory and Irwin study in rodents |
| **CTA submission** | • Preclinical safety evaluation completed and preparation for First in Human studies planned |

DDD drug-drug interaction; AMES bacterial mutagenesis and carcinogenesis test; MNT micronucleus test in human cell lines; MLY *in vivo* mouse mymphoma
ACI-3024 - Selective Tau aggregation in inhibitors

Conclusions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Morphomer platform has enabled identification of a new class of low molecular weight compounds, which specifically target misfolded and aggregated Tau.</td>
</tr>
<tr>
<td>2</td>
<td>Through a thorough medicinal chemistry program, ACI-3024 was identified as lead candidate with optimal drug like properties suitable for clinical development.</td>
</tr>
<tr>
<td>3</td>
<td>ACI-3024 has shown efficacy in pathological and functional read-outs in an aggressive transgenic Tauopathy model, with a strong PKPD correlation.</td>
</tr>
<tr>
<td>4</td>
<td>ACI-3024 has shown excellent preclinical safety and tolerability profile and is entering clinical development as disease-modifying agent for neurodegenerative diseases characterized by misfolded tau.</td>
</tr>
</tbody>
</table>
AC Immune

F. Capotosti
N. Sreenivasachary
A. Lamontanara
E. Gabellieri
P. Rodriguez
Y. Varisco
T. Jürgens

AC Immune team
C. Delgado
N. Wehr
K. Piorkowska
E. Vokali
E. Tsika
R. Migliorini
D. Beltramo

H. Kroth
D. Hickman
S. Poli
D. Lowe
A. Muhs
A. Pfeifer

Acknowledgements
Prof. P. Davies

TO BE UPDATED
Lilly?
Backup slides