Discovery and development of diagnostics and therapeutics for TDP-43 proteinopathies
Disclaimer

This presentation may contain statements that constitute “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune’s strategies or expectations. In some cases, you can identify these statements by forward-looking words such as “may,” “might,” “will,” “should,” “expects,” “plans,” “anticipates,” “believes,” “estimates,” “predicts,” “projects,” “potential,” “outlook” or “continue,” and other comparable terminology. Forward-looking statements are based on management’s current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions “Item 3. Key Information—Risk Factors” and “Item 5. Operating and Financial Review and Prospects” in AC Immune’s Annual Report on Form 20-F and other filings with the Securities and Exchange Commission. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are qualified in their entirety by this cautionary statement.

• TDP-43 therapeutic antibody project is the exclusive property of AC Immune.
• TDP-43 PET imaging project is non-exclusively partnered with Biogen.
Introduction
TDP-43, a therapeutic and biomarker target

- TDP-43 is a RNA/DNA binding protein expressed primarily in the nucleus where it functions as a regulator of gene transcription and RNA metabolism

- Pathological aggregation of TDP-43 is found in multiple neurodegenerative diseases
 - 97% of cases of ALS
 - 45% of cases FTD
 - 50% of cases of AD

- TDP-43 spreading and seeding contributes to disease pathogenesis

Therapeutic target – mAb program
Diagnostic tool: patient stratification and longitudinal measurements of disease progression and treatment efficacy – PET ligand program
The SupraAntigen™ platform
Immunotherapy against conformation-specific targets

- Synthetic peptide of 8-60 aa as antigen
- Anchor to induce and stabilize conformation
- Liposome to carry peptide and adjuvant
- Adjuvant to enhance immunogenicity

Key features of platform derived molecules
- Mimic pathological conformation
- Are highly immunogenic
- Have favorable safety

(1) Monophospholipid A

© 2019 AC Immune. Not to be used or reproduced without permission.
Generation of therapeutic antibodies

Antibody generation

- Use the SupraAntigen™ platform to generate mAbs specifically targeting disease-associated TDP-43 species
- Different antigen conjugation chemistries to control peptide/protein conformation on the liposome

Aim: to generate a panel of conformation-specific antibodies against TDP-43
TDP-43 mAb target engagement
IHC on frozen brain sections

pTDP-43
(CosmoBio TIP-PTD-p02)
pan TDP-43
(Proteintech 10782-2-AP)
misfolded TDP-43
(ACI mAb Clone A)

mAb Clone A detects TDP-43 aggregates in cytoplasm (arrows) in FTD brain tissues and does not bind to physiological, nuclear TDP-43

Ref: AC Immune unpublished data
TDP-43 mAb target engagement
IHC on paraffin-embedded brain sections

- In collaboration with Prof. Manuela Neumann

mAb Clone B detects TDP-43 aggregates in cytoplasm (arrows) in FTD brain tissues and does not bind to physiological, nuclear TDP-43

Ref: AC Immune unpublished data
TDP-43 mAb binding properties

Binding by Surface Plasmon Resonance (SPR)

Preferential binding to aggregated TDP-43 was observed. Characterization in functional assays is ongoing.

EM data provided by Senthil Kumar Thangaraj (Prof. Lashuel lab)

Ref: AC Immune unpublished data
TDP-43 PET tracer development

Challenges

- Sparse pathology - high affinity ligand needed for PET imaging
- Mixed pathologies - high selectivity over other aggregated proteins
- Specifically target cytoplasmic aggregates over monomeric TDP-43 located in the nucleus
- Screening and validation on FTD/ALS donor brain samples
- No tool compound available for assay development and benchmarking
Selectivity by radiobinding assays on AD brain homogenates

Confirm on 3 patient samples QC + analog testing

In vitro ADME and mouse PK

Radiolabeling and 18F-PK studies

Direct fluorescent staining on ALS/FTD brain section

> 660 cpds tested on human ALS/FTD brain sections by direct staining

Four hit series validated

Three 3H-radioligands for assay development

Three compounds profiled in mouse PK

Two 18F-radioligand profiled in mouse-PK
Confirmed hits
Hit Series I, II and IV

Compound A (Series I) on type A/C pathology

Compound B (Series II) on type A pathology

Compound C (Series IV) on type A pathology

Ref: AC Immune unpublished data
Radiobinding Assay

3H-Cpd-D binding to FTD-derived aggregated TDP-43 and AD brain

- Affinity measurements (Kd and Ki) for binding of Cpd-D on FTD brain-derived TDP-43 aggregates
- No specific binding measured for 3H-Cpd-D on AD brain homogenate
- Screening of compounds in Ki determination using 3H-Cpd-D is ongoing

Kd determination

<table>
<thead>
<tr>
<th>3H-Cpd-D</th>
<th>RU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>300</td>
<td>3000</td>
</tr>
</tbody>
</table>

Kd = 131.5 nM
R² = 0.93

Ki determination

<table>
<thead>
<tr>
<th>3H-Cpd-D</th>
<th>RU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
</tr>
<tr>
<td>30</td>
<td>1500</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
</tr>
</tbody>
</table>

Ki = 237.2 nM
R² = 0.95

3H-Cpd-D selectivity over Aβ in AD brain homogenate

- 3H-Cpd-D
 - 2% AD Brain insoluble
 - 1% AD Brain insoluble (Kd = 9.1 nM)

- 3H-Ref-AD
 - 1% AD Brain insoluble

Affinity measurements (Kd and Ki) for binding of Cpd-D on FTD brain-derived TDP-43 aggregates

No specific binding measured for 3H-Cpd-D on AD brain homogenate

Screening of compounds in Ki determination using 3H-Cpd-D is ongoing

Ref: AC Immune unpublished data
Cpd-D shows a promising cold PK profile with at least 1.45% of brain uptake, Tmax ≤ 2 min but no complete washout from the brain.

18F-Cpd-D pharmacokinetic experiments confirm a fast brain uptake (≤ 2 @4%ID), as well as a good but not complete washout from the brain.
Conclusion and perspectives

TDP-43 therapeutic antibody program

- Using SupraAntigen technology we generated antibodies selective for misfolded TDP-43
- These mAbs will be used for:
 - Identification of TDP-43 species linked to disease stage or disease severity
 - Characterization in functional assays in vitro
 - PoC efficacy studies in animal models with TDP-43 pathology

TDP-43 PET imaging program

- Following our screening cascade we identified four hit series with distinct chemical scaffolds interacting with pathological TDP-43 aggregates
- We have radiolabeled with tritium four tool compounds; our lead molecule binds to FTD patient brain homogenates with an affinity of 134 nM
- Our compound showed promising 18F-PK properties for a PET imaging agent: quick and high brain uptake and fast but not complete washout from the brain
- A screening campaign using radiobinding assays is ongoing in order to identify compounds with higher affinity and improved pharmacokinetic profiles

Ref: AC Immune unpublished data
Acknowledgments

AC Immune
Tariq Afroz
Vincent Darmency
Cedric Boudou
Jacqueline Kocher
Mayank Chauhan
Andrej Bavdek
Nicolas Piot
Celine Petit
Pilar Lopez
Heiko Kroth
Oskar Adolfsson
Jan Stoehr
Marie Kosco-Vilbois
Andreas Muhs
Andrea Pfeifer

Biogen
Ajay Purohit
David Paterson
Karl Evans
Laurent Martarello
John Beaver

EPA
Hilal Lashuel
Senthil Thangaraj

DZNE
Manuela Neumann

- Neurodegenerative Disease Brain Bank UCSF, Prof. William Seeley (funding support from NIH grants P01AG019724 and P50AG023501, the Consortium for Frontotemporal Dementia Research, and the Tau Consortium).
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam. All Material has been collected from donors from whom a written informed consent for brain autopsy and the use of the material and clinical information for research purposes had been obtained by the NBB.
- Queen Square Brain Bank for Neurological Disorders, UCL
- Banner Sun Health Research Institute’s Brain and Body Donation Program
- Brain Bank affiliated with the German Center for Neurodegenerative Diseases (DZNE) and the University Hospital of Tübingen

Contact:
tamara.seredenina@acimmune.com